欢迎光临好总结范文网
当前位置: > 总结大全 > 教学总结 > 小学总结

小学奥数知识点总结之分数大小的比较十篇

发布时间:2024-02-19 12:48:01 查看人数:28

小学奥数知识点总结之分数大小的比较

第一篇 小学奥数知识点总结之分数大小的比较 400字

分数大小的比较

基本方法:

①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。

②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。

③基准数法:确定一个标准,使所有的分数都和它进行比较。

④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。

⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)

⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。

⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。

⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。

⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。

⑩基准数比较法:确定一个基准数,每一个数与基准数比较。

第二篇 小学奥数公式总结 1300字

小学奥数常用公式

1 、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2 、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3 、速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4 、单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5 、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6 、正方形 c周长 s面积 a边长 周长=边长× 4 c=4a 面积=边长×边长 s=a×a

7 、正方体 v:体积 a:棱长 表面积=棱长×棱长×6 s表=a×a×6 体积=棱长×棱长×棱长 v=a×a×a

8、长方形 c周长 s面积 a边长 周长=(长+宽)×2 c=2(a+b) 面积=长×宽 s=ab

9 、长方体 v:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 s=2(ab+ah+bh) (2)体积=长×宽×高 v=abh

10 、三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底三角形底=面积 ×2÷高

11 、平行四边形 s面积 a底 h高 面积=底×高 s=ah

12 、 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2

13、 圆形 s面积 c周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 c=∏d=2∏r (2)面积=半径×半径×∏

14 、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径

15、圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数

16、和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数

17、和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)

18、差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)

19、植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那就这样: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 : 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数

20、盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数

21、相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间

22、追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间

23、流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2

24、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量

25、利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)

第三篇 小学奥数知识点总结:综合行程 350字

综合行程

基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

关键问题:确定运动过程中的位置和方向。

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

追及问题:追及时间=路程差÷速度差(写出其他公式)

流水问题:顺水行程=(船速+水速)×顺水时间

逆水行程=(船速-水速)×逆水时间

顺水速度=船速+水速

逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2

水 速=(顺水速度-逆水速度)÷2

流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

主要方法:画线段图法

基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

第四篇 小学奥数数论质数与合数问题考点总结 450字

小学奥数数论质数与合数问题考点解析:

某个质数与6、8、12、14之和都仍然是质数,一共有1个满足上述条件的质数.

考点:质数与合数问题.

分析:个位数的质数是2、3、5、7、9,大于10的质数的个位数一个不是0、2或5,是1、3、7或9;由于6、8、12、14是偶数,则这个质数的个位数一定为奇数,即为1,3,5,7,9.然后将它们分别与6、8、12、14相加进行验证排除即可.

解答:解:6,8,12,14都是偶数,加上的偶数质数2和仍然是偶数,所以不是2.

14加上任何尾数是1的质数,最后的尾数都是5,一定能被5整除.

12加上任何尾数是3的质数,尾数也是5;

8加上任何尾数是7的质数,尾数也是5;

6加上任何尾数是9的质数,尾数也是5.

所以,这个质数的末位一定不是1,3,7,9.

5加上6、8、12、14中任意一个数的末位数都不是5,而末位数是5的质数中,只有5是质数,

因此,只有5能满足条件,即一共有1个满足上述条件的质数.

故答案为:1.点评:明确除2和5以外质数的个位都是1,3,7,9,大于10的个位数是5数一定不是质数这两个规律是完成本题的关键.

第五篇 小学六年级奥数几何初步认识知识点总结 400字

一 、线和角

1. 线

_ 直线

直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

_ 射线

射线只有一个端点;长度无限。

_ 线段

线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

_ 平行线

在同一平面内,不相交的两条直线叫做平行线。两条平行线之间的垂线长度都相等。

_ 垂线

两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

2. 角

(1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的分类

锐角:小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。

周角:角的一边旋转一周,与另一边重合。周角是360°。

第六篇 小学奥数知识点总结 2900字

一、 计算

1. 四则混合运算繁分数

⑴ 运算顺序

⑵ 分数、小数混合运算技巧

一般而言:

① 加减运算中,能化成有限小数的统一以小数形式;

② 乘除运算中,统一以分数形式。

⑶带分数与假分数的互化

⑷繁分数的化简

2. 简便计算

⑴凑整思想

⑵基准数思想

⑶裂项与拆分

⑷提取公因数

⑸商不变性质

⑹改变运算顺序

① 运算定律的综合运用

② 连减的性质

③ 连除的性质

④ 同级运算移项的性质

⑤ 增减括号的性质

⑥ 变式提取公因数

形如:

3. 估算

求某式的整数部分:扩缩法

4. 比较大小

① 通分

a. 通分母

b. 通分子

② 跟'中介'比

③ 利用倒数性质

若 1/c<1/b<1/c,则c>b>a.。

5. 定义新运算

6. 特殊数列求和

运用相关公式

二、 数论

1. 奇偶性问题

奇+奇=偶 奇×奇=奇

奇+偶=奇 奇×偶=偶

偶+偶=偶 偶×偶=偶

2. 位值原则

形如:abc =100a+10b+c

3. 数的整除特征:

整除数特征

2 末尾是0、2、4、6、8

3 各数位上数字的和是3的倍数

5 末尾是0或5

9 各数位上数字的和是9的倍数

11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数

4和25 末两位数是4(或25)的倍数

8和125 末三位数是8(或125)的倍数

7、11、13 末三位数与前几位数的差是7(或11或13)的倍数

4. 整除性质

① 如果c|a、c|b,那么c|(a b)。

② 如果bc|a,那么b|a,c|a。

③ 如果b|a,c|a,且(b,c)=1,那么bc|a。

④ 如果c|b,b|a,那么c|a.

⑤ a个连续自然数中必恰有一个数能被a整除。

5. 带余除法

一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r

当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r, 0≤r<b a=b×q+r

6. 分解定理

任何一个大于1的自然数n都可以写成质数的连乘积,即

n= p1 × p2 ×...×pk

7. 约数个数与约数和定理

设自然数n的质因子分解式如n= p1 × p2 ×...×pk 那么:

n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)

n的所有约数和:(1+p1+p1 +…p1 )(1+p2+p2 +…p2 )…(1+pk+pk +…pk )

8. 同余定理

① 同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)

②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。

③两数的和除以m的余数等于这两个数分别除以m的余数和。

④两数的差除以m的余数等于这两个数分别除以m的余数差。

⑤两数的积除以m的余数等于这两个数分别除以m的余数积。

9.完全平方数性质

①平方差: a -b =(a+b)(a-b),其中我们还得注意a+b, a-b同奇偶性。

②约数:约数个数为奇数个的是完全平方数。

约数个数为3的是质数的平方。

③质因数分解:把数字分解,使他满足积是平方数。

④平方和。

10.孙子定理(中国剩余定理)

11.辗转相除法

12.数论解题的常用方法:

枚举、归纳、反证、构造、配对、估计

三、 几何图形

1. 平面图形

⑴多边形的内角和

n边形的内角和=(n-2)×180°

⑵等积变形(位移、割补)

① 三角形内等底等高的三角形

② 平行线内等底等高的三角形

③ 公共部分的传递性

④ 极值原理(变与不变)

⑶三角形面积与底的正比关系

s1∶s2 =a∶b ;

s1∶s2=s4∶s3 或者s1×s3=s2×s4

⑹差不变原理

知5-2=3,则圆点比方点多3。

⑺隐含条件的等价代换

例如弦图中长短边长的关系。

⑻组合图形的思考方法

① 化整为零

② 先补后去

③ 正反结合

2. 立体图形

⑴规则立体图形的表面积和体积公式

⑵不规则立体图形的表面积

整体观照法

⑶体积的等积变形

①水中浸放物体:v升水=v物

②测啤酒瓶容积:v=v空气+v水

⑷三视图与展开图

最短线路与展开图形状问题

⑸染色问题

几面染色的块数与'芯'、棱长、顶点、面数的关系。

四、 典型应用题

1. 植树问题

①开放型与封闭型

②间隔与株数的关系

2. 方阵问题

外层边长数-2=内层边长数

(外层边长数-1)×4=外周长数

外层边长数2-中空边长数2=实面积数

3. 列车过桥问题

①车长+桥长=速度×时间

②车长甲+车长乙=速度和×相遇时间

③车长甲+车长乙=速度差×追及时间

列车与人或骑车人或另一列车上的司机的相遇及追及问题

车长=速度和×相遇时间

车长=速度差×追及时间

4. 年龄问题

差不变原理

5. 鸡兔同笼

假设法的解题思想

6. 牛吃草问题

原有草量=(牛吃速度-草长速度)×时间

7. 平均数问题

8. 盈亏问题

分析差量关系

9. 和差问题

10. 和倍问题

11. 差倍问题

12. 逆推问题

还原法,从结果入手

13. 代换问题

列表消元法

等价条件代换

五、 行程问题

1. 相遇问题

路程和=速度和×相遇时间

2. 追及问题

路程差=速度差×追及时间

3. 流水行船

顺水速度=船速+水速

逆水速度=船速-水速

船速=(顺水速度+逆水速度)÷2

水速=(顺水速度-逆水速度)÷2

4. 多次相遇

线型路程: 甲乙共行全程数=相遇次数×2-1

环型路程: 甲乙共行全程数=相遇次数

其中甲共行路程=单在单个全程所行路程×共行全程数

5. 环形跑道

6. 行程问题中正反比例关系的应用

路程一定,速度和时间成反比。

速度一定,路程和时间成正比。

时间一定,路程和速度成正比。

7. 钟面上的追及问题。

① 时针和分针成直线;

② 时针和分针成直角。

8. 结合分数、工程、和差问题的一些类型。

9. 行程问题时常运用'时光倒流'和'假定看成'的思考方法。

六、 计数问题

1. 加法原理:分类枚举

2. 乘法原理:排列组合

3. 容斥原理:

① 总数量=a+b+c-(ab+ac+bc)+abc

② 常用:总数量=a+b-ab

4. 抽屉原理:

至多至少问题

5. 握手问题

在图形计数中应用广泛

① 角、线段、三角形,

② 长方形、梯形、平行四边形

③ 正方形

七、 分数问题

1. 量率对应

2. 以不变量为'1'

3. 利润问题

4. 浓度问题

倒三角原理

例:

5. 工程问题

① 合作问题

② 水池进出水问题

6. 按比例分配

八、 方程解题

1. 等量关系

① 相关联量的表示法

例: 甲 + 乙 =100 甲÷乙=3

_ 100-_ 3_ _

②解方程技巧

恒等变形

2. 二元一次方程组的求解

代入法、消元法

3. 不定方程的分析求解

以系数大者为试值角度

4. 不等方程的分析求解

九、 找规律

⑴周期性问题

① 年月日、星期几问题

② 余数的应用

⑵数列问题

① 等差数列

通项公式 an=a1+(n-1)d

求项数: n=

求和: s=

② 等比数列

求和: s=

③ 裴波那契数列

⑶策略问题

① 抢报30

② 放硬币

⑷最值问题

① 最短线路

a.一个字符阵组的分线读法

b.在格子路线上的最短走法数

② 化问题

a.统筹方法

b.烙饼问题

十、 算式谜

1. 填充型

2. 替代型

3. 填运算符号

4. 横式变竖式

5. 结合数论知识点

十一、 数阵问题

1. 相等和值问题

2. 数列分组

⑴知行列数,求某数

⑵知某数,求行列数

3. 幻方

⑴奇阶幻方问题:

杨辉法 罗伯法

⑵偶阶幻方问题:

双偶阶:对称交换法

单偶阶:同心方阵法

十二、 二进制

1. 二进制计数法

① 二进制位值原则

② 二进制数与十进制数的互相转化

③ 二进制的运算

2. 其它进制(十六进制)

十三、 一笔画

1. 一笔画定理:

⑴一笔画图形中只能有0个或两个奇点;

⑵两个奇点进必须从一个奇点进,另一个奇点出;

2. 哈密尔顿圈与哈密尔顿链

3. 多笔画定理

笔画数=

十四、 逻辑推理

1. 等价条件的转换

2. 列表法

3. 对阵图

竞赛问题,涉及体育比赛常识

十五、 火柴棒问题

1. 移动火柴棒改变图形个数

2. 移动火柴棒改变算式,使之成立

十六、 智力问题

1. 突破思维定势

2. 某些特殊情境问题

十七、 解题方法

(结合杂题的处理) 9. 画图法

1. 代换法 10. 列表法

2. 消元法 11. 排除法

3. 倒推法 12. 染色法

4. 假设法 13. 构造法

5. 反证法 14. 配对法

6. 极值法 15. 列方程

7. 设数法 ⑴方程

8. 整体法 ⑵不定方程

⑶不等方程

第七篇 小学六年级奥数考点总结:平方差巧算技巧 150字

连续自然数的平方差

平方差=甲数+乙数

72-62=7+6=13

202-192=20+19=39

3262-3252=326+325=651

51482-51472=5148+5147=10295

......

连续奇数或偶数的平方差

平方差=(较大数-1)_4

92-72=(9-1)_4=32

152-132=(15-1)_4=56

102-82=(10-1)_4=36

222-202=(22-1)_4=84

2152-2132=(215-1)_4=856

3442-3422=(344-1)_4=1372

......

第八篇 小学六年级奥数计算分数和百分数知识点总结 400字

分数

1分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

百分数

表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率

或百分比。百分数通常用“%”来表示。百分号是表示百分数的符号。

第九篇 小学奥数知识点总结:约数与倍数 550字

约数与倍数

约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中的一个,叫做这几个数的公约数。

公约数的性质:

1、几个数都除以它们的公约数,所得的几个商是互质数。

2、几个数的公约数都是这几个数的约数。

3、几个数的公约数,都是这几个数的公约数的约数。

4、几个数都乘以一个自然数m,所得的积的公约数等于这几个数的公约数乘以m。

例如:12的约数有1、2、3、4、6、12;

18的约数有:1、2、3、6、9、18;

那么12和18的公约数有:1、2、3、6;

那么12和18的公约数是:6,记作(12,18)=6;

求公约数基本方法:

1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的公约数。

公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48……;

18的倍数有:18、36、54、72……;

那么12和18的公倍数有:36、72、108……;

那么12和18最小的公倍数是36,记作[12,18]=36;

最小公倍数的性质:

1、两个数的任意公倍数都是它们最小公倍数的倍数。

2、两个数公约数与最小公倍数的乘积等于这两个数的乘积。

求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法

第十篇 小学奥数数论知识点总结 550字

约数与倍数

约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

●公约数:几个数公有的约数,叫做这几个数的公约数;其中的一个,叫做这几个数的公约数。

▶公约数的性质:

1.几个数都除以它们的公约数,所得的几个商是互质数。

2.几个数的公约数都是这几个数的约数。

3.几个数的公约数,都是这几个数的公约数的约数。

4.几个数都乘以一个自然数m,所得的积的公约数等于这几个数的公约数乘以m。

例如:12的约数有1、2、3、4、6、12;

18的约数有:1、2、3、6、9、18;

那么12和18的公约数有:1、2、3、6;

那么12和18的公约数是:6,记作(12,18)=6;

▶求公约数基本方法:

1.分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2.短除法:先找公有的约数,然后相乘。

3.辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的公约数。

●公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48……;

18的倍数有:18、36、54、72……;

那么12和18的公倍数有:36、72、108……;

那么12和18最小的公倍数是36,记作[12,18]=36;

▶最小公倍数的性质:

1.两个数的任意公倍数都是它们最小公倍数的倍数。

2.两个数公约数与最小公倍数的乘积等于这两个数的乘积。

▶求最小公倍数基本方法:

1.短除法求最小公倍数;2.分解质因数的方法

小学奥数知识点总结之分数大小的比较十篇

分数大小的比较基本方法:①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。③基准数法:确定一个标准,使所有的分数都和它进行比较。④分子和分母大小比较法:当分子和分母的差一定时,分
推荐度:
点击下载文档文档为doc格式

相关奥数范文

  • 小学奥数总结15篇
  • 小学奥数总结15篇80人关注

    约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。●公约数:几个数公有的约数,叫做这几个数的公约数;其中的一个,叫做这几个数的公约数。▶公约数 ...[更多]

  • 小学奥数数论知识点总结(三篇)
  • 小学奥数数论知识点总结(三篇)76人关注

    约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。●公约数:几个数公有的约数,叫做这几个数的公约数;其中的一个,叫做这几个数的公约数。▶公约数 ...[更多]

  • 小学奥数知识点总结15篇
  • 小学奥数知识点总结15篇61人关注

    当有人问及世界科学家爱因斯坦取得成功的奥秘时,他写下一个有名的公式:ω=x+y+z。ω代表成功,x代表勤奋,y代表正确的方法,z代表少说空话。学习数学也是这样,对学习目的 ...[更多]

  • 小学奥数知识点总结(十六篇)
  • 小学奥数知识点总结(十六篇)60人关注

    一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。⑶带分数与 ...[更多]

  • 小学奥数知识总结15篇
  • 小学奥数知识总结15篇52人关注

    牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。基本特点:原 ...[更多]

  • 小学奥数知识点总结十篇
  • 小学奥数知识点总结十篇17人关注

    一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。⑶带 ...[更多]