第1篇 小学奥数关于数论知识点的总结
1. 奇偶性问题
奇+奇=偶 奇×奇=奇
奇+偶=奇 奇×偶=偶
偶+偶=偶 偶×偶=偶
2. 位值原则
形如:abc =100a+10b+c
3. 数的整除特征:
整除数特征
2 末尾是0、2、4、6、8
3 各数位上数字的和是3的倍数
5 末尾是0或5
9 各数位上数字的和是9的倍数
11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25 末两位数是4(或25)的倍数
8和125 末三位数是8(或125)的倍数
7、11、13 末三位数与前几位数的差是7(或11或13)的倍数
4. 整除性质
① 如果c|a、c|b,那么c|(a b)。
② 如果bc|a,那么b|a,c|a。
③ 如果b|a,c|a,且(b,c)=1,那么bc|a。
④ 如果c|b,b|a,那么c|a.
⑤ a个连续自然数中必恰有一个数能被a整除。
5. 带余除法
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r, 0≤r
第2篇 小学奥数关于数论知识点的总结
小学奥数数论质数与合数问题考点解析:
某个质数与6、8、12、14之和都仍然是质数,一共有1个满足上述条件的质数.
考点:质数与合数问题.
分析:个位数的质数是2、3、5、7、9,大于10的质数的个位数一个不是0、2或5,是1、3、7或9;由于6、8、12、14是偶数,则这个质数的个位数一定为奇数,即为1,3,5,7,9.然后将它们分别与6、8、12、14相加进行验证排除即可.
解答:解:6,8,12,14都是偶数,加上的偶数质数2和仍然是偶数,所以不是2.
14加上任何尾数是1的质数,最后的尾数都是5,一定能被5整除.
12加上任何尾数是3的质数,尾数也是5;
8加上任何尾数是7的质数,尾数也是5;
6加上任何尾数是9的质数,尾数也是5.
所以,这个质数的末位一定不是1,3,7,9.
5加上6、8、12、14中任意一个数的末位数都不是5,而末位数是5的质数中,只有5是质数,
因此,只有5能满足条件,即一共有1个满足上述条件的质数.
故答案为:1.点评:明确除2和5以外质数的个位都是1,3,7,9,大于10的个位数是5数一定不是质数这两个规律是完成本题的关键.
第3篇 小学奥数关于数论知识点的总结
约数与倍数
约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
●公约数:几个数公有的约数,叫做这几个数的公约数;其中的一个,叫做这几个数的公约数。
▶公约数的性质:
1.几个数都除以它们的公约数,所得的几个商是互质数。
2.几个数的公约数都是这几个数的约数。
3.几个数的公约数,都是这几个数的公约数的约数。
4.几个数都乘以一个自然数m,所得的积的公约数等于这几个数的公约数乘以m。
例如:12的约数有1、2、3、4、6、12;
18的约数有:1、2、3、6、9、18;
那么12和18的公约数有:1、2、3、6;
那么12和18的公约数是:6,记作(12,18)=6;
▶求公约数基本方法:
1.分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2.短除法:先找公有的约数,然后相乘。
3.辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的公约数。
●公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;
18的倍数有:18、36、54、72……;
那么12和18的公倍数有:36、72、108……;
那么12和18最小的公倍数是36,记作[12,18]=36;
▶最小公倍数的性质:
1.两个数的任意公倍数都是它们最小公倍数的倍数。
2.两个数公约数与最小公倍数的乘积等于这两个数的乘积。
▶求最小公倍数基本方法:
1.短除法求最小公倍数;2.分解质因数的方法
第4篇 小学奥数关于数论知识点的总结
数的整除性规律
能被2或5整除的数的特征一个数的末位能被2或5整除,这个数就能被2或5整除
能被3或9整除的数的特征一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。
例如,1248621各位上的数字之和是1+2+4+8+6+2+1=24
3|24,则3|1248621。
又如,372681各位上的数字之和是3+7+2+6+8+1=27
9|27,则9|372681。
能被4或25整除的数的特征一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。
例如,
173824的末两位数为24,4|24,则4|173824。
43586775的末两位数为75,25|75,则25|43586775。
能被8或125整除的数的特征一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。
例如,
32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。
3569824的末三位数为824,8|824,则8|3569824。
214813750的末三位数为750,125|750,则125|214813750。
能被7、11、13整除的数的特征一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。
例如,75523的末三位数为523,末三位以前的数字所表示的数是75,523-75=448,448÷7=64,即7|448,则7|75523。
又如,1095874的末三位数为874,末三位以前的数字所表示的数是1095,1095-874=221,221÷13=17,即13|221,则13|1095874。
再如,868967的末三位数为967,末三位以前的数字所表示的数是868,967-868=99,99÷11=9,即11|99,则11|868967。
此外,能被11整除的数的特征,还可以这样叙述:一个数,当且仅当它的奇数位上数字之和,与偶数位上数字之和的差(大减小)能被11整除时,则这个数便能被11整除。
例如,4239235的奇数位上的数字之和为4+3+2+5=14,偶数位上数字之和为2+9+3=14,二者之差为14-14=0,0÷11=0,即11|0,则11|4239235。