第1篇 小学奥数知识点总结之分数大小的比较
分数大小的比较
基本方法:
①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。
②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。
③基准数法:确定一个标准,使所有的分数都和它进行比较。
④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。
⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)
⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。
⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。
⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。
⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。
⑩基准数比较法:确定一个基准数,每一个数与基准数比较。
第2篇 小学奥数知识点总结之分数大小的比较
连续自然数的平方差
平方差=甲数+乙数
72-62=7+6=13
202-192=20+19=39
3262-3252=326+325=651
51482-51472=5148+5147=10295
......
连续奇数或偶数的平方差
平方差=(较大数-1)x4
92-72=(9-1)x4=32
152-132=(15-1)x4=56
102-82=(10-1)x4=36
222-202=(22-1)x4=84
2152-2132=(215-1)x4=856
3442-3422=(344-1)x4=1372
......
第3篇 小学奥数知识点总结之分数大小的比较
数的整除性规律
能被2或5整除的数的特征一个数的末位能被2或5整除,这个数就能被2或5整除
能被3或9整除的数的特征一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。
例如,1248621各位上的数字之和是1+2+4+8+6+2+1=24
3|24,则3|1248621。
又如,372681各位上的数字之和是3+7+2+6+8+1=27
9|27,则9|372681。
能被4或25整除的数的特征一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。
例如,
173824的末两位数为24,4|24,则4|173824。
43586775的末两位数为75,25|75,则25|43586775。
能被8或125整除的数的特征一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。
例如,
32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。
3569824的末三位数为824,8|824,则8|3569824。
214813750的末三位数为750,125|750,则125|214813750。
能被7、11、13整除的数的特征一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。
例如,75523的末三位数为523,末三位以前的数字所表示的数是75,523-75=448,448÷7=64,即7|448,则7|75523。
又如,1095874的末三位数为874,末三位以前的数字所表示的数是1095,1095-874=221,221÷13=17,即13|221,则13|1095874。
再如,868967的末三位数为967,末三位以前的数字所表示的数是868,967-868=99,99÷11=9,即11|99,则11|868967。
此外,能被11整除的数的特征,还可以这样叙述:一个数,当且仅当它的奇数位上数字之和,与偶数位上数字之和的差(大减小)能被11整除时,则这个数便能被11整除。
例如,4239235的奇数位上的数字之和为4+3+2+5=14,偶数位上数字之和为2+9+3=14,二者之差为14-14=0,0÷11=0,即11|0,则11|4239235。
第4篇 小学奥数知识点总结之分数大小的比较
约数与倍数
约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
●公约数:几个数公有的约数,叫做这几个数的公约数;其中的一个,叫做这几个数的公约数。
▶公约数的性质:
1.几个数都除以它们的公约数,所得的几个商是互质数。
2.几个数的公约数都是这几个数的约数。
3.几个数的公约数,都是这几个数的公约数的约数。
4.几个数都乘以一个自然数m,所得的积的公约数等于这几个数的公约数乘以m。
例如:12的约数有1、2、3、4、6、12;
18的约数有:1、2、3、6、9、18;
那么12和18的公约数有:1、2、3、6;
那么12和18的公约数是:6,记作(12,18)=6;
▶求公约数基本方法:
1.分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2.短除法:先找公有的约数,然后相乘。
3.辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的公约数。
●公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;
18的倍数有:18、36、54、72……;
那么12和18的公倍数有:36、72、108……;
那么12和18最小的公倍数是36,记作[12,18]=36;
▶最小公倍数的性质:
1.两个数的任意公倍数都是它们最小公倍数的倍数。
2.两个数公约数与最小公倍数的乘积等于这两个数的乘积。
▶求最小公倍数基本方法:
1.短除法求最小公倍数;2.分解质因数的方法
第5篇 小学奥数知识点总结之分数大小的比较
分数
1分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
百分数
表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率
或百分比。百分数通常用“%”来表示。百分号是表示百分数的符号。
第6篇 小学奥数知识点总结之分数大小的比较
1、顺等差数列,前一个数减去后一个数的差相等。例如:1,3,5,7,9,…
逆等差数列,后一个数减去前一个数的差相等。例如:10,8,6,4,2…;
2、顺等比数列,即前一个数除以后一个数的商相等。例如:2,4,8,16,32…;
逆等比数列,即后一个数除以前一个数的商相等。例如:1024,512,256,128,…;
3、兔子数列,即单数序号的数字与双数序号的数分别形成规律。
例如8,15,10,13,12,11,(14),(9)这里8,10,12,14成规律,15,13,12,11,9成规律;
4、质数数列规律,例如:2,3,5,7,11,(13),(17)....这些数学都为质数;
注意:一般考试只有以下一种情况,而且容易出现到小升初考试,要特别注意。
5、“平方数列”、“立方数列”等,
例如:平方数列:1、4、9、16、27、64、125、…
立方数列:1、8、27、64、81、256、625、…
6、相邻数字差呈现规律。
数字之间差呈现等差数列,例如:1、3、7、13、21、31、43、…
数字之间差呈现等比数列,例如:1、3、7、15、31、63、…
7、多个数字间呈现规律,(本题考查较少)
裴波那契数列,即任意连续两个数字之和等于第三个数字,
例如:1、1、2、3、5、8、13、21、34、…
任意连续三个数字之和等于第四个数字,
例如:1、1、1、3、5、9、17、31、57、105、…
第7篇 小学奥数知识点总结之分数大小的比较
工程问题
基本公式:
①工作总量=工作效率×工作时间
②工作效率=工作总量÷工作时间
③工作时间=工作总量÷工作效率
基本思路:
①假设工作总量为“1”(和总工作量无关);
②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.
关键问题:确定工作量、工作时间、工作效率间的两两对应关系。
经验简评:合久必分,分久必合。
第8篇 小学奥数知识点总结之分数大小的比较
数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:
首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用sn表示.
基本思路:等差数列中涉及五个量:a1,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an=a1+(n-1)d;
通项=首项+(项数一1)×公差;
数列和公式:sn,= (a1+an)×n÷2;
数列和=(首项+末项)×项数÷2;
项数公式:n= (an+a1)÷d+1;
项数=(末项-首项)÷公差+1;
公差公式:d =(an-a1))÷(n-1);
公差=(末项-首项)÷(项数-1);
第9篇 小学奥数知识点总结之分数大小的比较
小学奥数常用公式
1 、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2 、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4 、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5 、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6 、正方形 c周长 s面积 a边长 周长=边长× 4 c=4a 面积=边长×边长 s=a×a
7 、正方体 v:体积 a:棱长 表面积=棱长×棱长×6 s表=a×a×6 体积=棱长×棱长×棱长 v=a×a×a
8、长方形 c周长 s面积 a边长 周长=(长+宽)×2 c=2(a+b) 面积=长×宽 s=ab
9 、长方体 v:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 s=2(ab+ah+bh) (2)体积=长×宽×高 v=abh
10 、三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底三角形底=面积 ×2÷高
11 、平行四边形 s面积 a底 h高 面积=底×高 s=ah
12 、 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2
13、 圆形 s面积 c周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 c=∏d=2∏r (2)面积=半径×半径×∏
14 、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径
15、圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数
16、和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数
17、和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
18、差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
19、植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那就这样: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 : 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
20、盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数
21、相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间
22、追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间
23、流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2
24、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量
25、利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)
第10篇 小学奥数知识点总结之分数大小的比较
逻辑推理
基本方法简介:
①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。
②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。
③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如a和b两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。
④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。
⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。
第11篇 小学奥数知识点总结之分数大小的比较
综合行程
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追及问题:追及时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
主要方法:画线段图法
基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。
第12篇 小学奥数知识点总结之分数大小的比较
鸡兔同笼问题
基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;
基本思路:
①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):
②假设后,发生了和题目条件不同的差,找出这个差是多少;
③每个事物造成的差是固定的,从而找出出现这个差的原因;
④再根据这两个差作适当的调整,消去出现的差。
基本公式:
①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)
②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)
关键问题:找出总量的差与单位量的差。
和差倍问题
和差问题和倍问题差倍问题
已知条件几个数的和与差几个数的和与倍数几个数的差与倍数
公式适用范围已知两个数的和,差,倍数关系
公式①(和-差)÷2=较小数
较小数+差=较大数
和-较小数=较大数
②(和+差)÷2=较大数
较大数-差=较小数
和-较大数=较小数
和÷(倍数+1)=小数
小数×倍数=大数
和-小数=大数
差÷(倍数-1)=小数
小数×倍数=大数
小数+差=大数
关键问题求出同一条件下的
和与差和与倍数差与倍数
植树问题
基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树
基本公式棵数=段数+1
棵距×段数=总长棵数=段数-1
棵距×段数=总长棵数=段数
棵距×段数=总长
关键问题确定所属类型,从而确定棵数与段数的关系
第13篇 小学奥数知识点总结之分数大小的比较
依解题填制的过程可区分为直观法与候选数法。
直观法就是不做任何记号,直接从数独的盘势观察线索,推论答案的方法。
候选数法就是删减等位群格位已出现的数字,将剩余可填数字填入空格做为解题线索的参考,可填数字称为候选数(candidates,或称备选数)。
直观法和候选数法只是填制时候是否有注记的区别,依照个人习惯而定,并非鉴定题目难度或技巧难度的标准,无论是难题或是简单题都可上述方法填制,一般程序解题以候选数法较多。
第14篇 小学奥数知识点总结之分数大小的比较
1. 奇偶性问题
奇+奇=偶 奇×奇=奇
奇+偶=奇 奇×偶=偶
偶+偶=偶 偶×偶=偶
2. 位值原则
形如:abc =100a+10b+c
3. 数的整除特征:
整除数特征
2 末尾是0、2、4、6、8
3 各数位上数字的和是3的倍数
5 末尾是0或5
9 各数位上数字的和是9的倍数
11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25 末两位数是4(或25)的倍数
8和125 末三位数是8(或125)的倍数
7、11、13 末三位数与前几位数的差是7(或11或13)的倍数
4. 整除性质
① 如果c|a、c|b,那么c|(a b)。
② 如果bc|a,那么b|a,c|a。
③ 如果b|a,c|a,且(b,c)=1,那么bc|a。
④ 如果c|b,b|a,那么c|a.
⑤ a个连续自然数中必恰有一个数能被a整除。
5. 带余除法
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r, 0≤r
第15篇 小学奥数知识点总结之分数大小的比较
牛吃草问题
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;
关键问题:确定两个不变的量。
基本公式:
生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
总草量=较长时间×长时间牛头数-较长时间×生长量;
第16篇 小学奥数知识点总结之分数大小的比较
一 、线和角
1. 线
_ 直线
直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
_ 射线
射线只有一个端点;长度无限。
_ 线段
线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
_ 平行线
在同一平面内,不相交的两条直线叫做平行线。两条平行线之间的垂线长度都相等。
_ 垂线
两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
2. 角
(1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。
(2)角的分类
锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。
周角:角的一边旋转一周,与另一边重合。周角是360°。