第1篇 初中知识点总结不等式
初中知识点总结不等式
1.不等式
用不等号连接起来的式子叫做不等式.
2.不等式的解与解集
不等式的解:使不等式成立的未知数的值,叫做不等式的解.
不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.
不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的`,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.
3.不等式的基本性质
(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果 ,那么 (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果 ,那么 (或 )
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果 那么 (或 )
说明:任意两个实数a、b的大小关系:①a-bb;②a-b=o a=b;③a-b
4.一元一次不等式
只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式.
注:一元一次不等式的一般形式是ax+bo或ax+b
5.解一元一次不等式的一般步骤
(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.
6.一元一次不等式组
含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.
说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.
7.一元一次不等式组的解集
一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.
一元一次不等式组的解集通常利用数轴来确定.
8. 不等式组解集的确定方法,可以归纳为以下四种类型(设ab)
不等式组图示解集
(同大取大)
(同小取小)
(大小交叉取中间)
无解(大小分离解为空)
9.解一元一次不等式组的步骤
(1)分别求出不等式组中各个不等式的解集;
(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.
第2篇 初中知识点总结不等式
初中数学有关解不等式的知识点总结
代数式中的计算问题一直是重点难点,在不等式这一章节的学习中也有所体现。
解不等式的'原理
主要的有:
①不等式f(x)< g(x)与不等式 g(x)>;f(x)同解。
②如果不等式f(x) < g(x)的定义域被解析式h( x )的定义域所包含,那么不等式 f(x)
③如果不等式f(x)0,那么不等式f(x)h(x)g(x)同解。
④不等式f(x)g(x)>;0与不等式同解;不等式f(x)g(x)<0与不等式同解。
上述的四大解不等式的原理,都是小编整合出来的精华部分,希望大家注意记忆了。
第3篇 初中知识点总结不等式
不等式的初中数学知识点总结
不等式
不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>;”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)
“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为f(x,y,……,z)≤g(x,y,……,z )(其中不等号也可以为<,≥,>; 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
整式不等式
是不等式两边都是整式 ( 未知数不在分母上 )
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式.如3-x>;0
同理:二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的.不等式.
不等式的最基本性质
①如果x>;y,那么yy;(对称性)
②如果x>;y,y>;z;那么x>;z;(传递性)
③如果x>;y,而z为任意实数或整式,那么x+z>;y+z;(加法原则)
④ 如果x>;y,z>;0,那么xz>;yz;如果x>;y,z<0,那么xz
⑤如果x>;y,z>;0,那么x÷z>;y÷z;如果x>;y,z<0,那么x÷z
⑥如果x>;y,m>;n,那么x+m>;y+n;(充分不必要条件)
⑦如果x>;y>;0,m>;n>;0,那么xm>;yn;
⑧如果x>;y>;0,那么x的n次幂>;y的n次幂(n为正数)
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上是其中比较有名的。
解不等式的原理
主要的有:
①不等式f(x)< g(x)与不等式 g(x)>;f(x)同解。
②如果不等式f(x) < g(x)的定义域被解析式h( x )的定义域所包含,那么不等式 f(x)
③如果不等式f(x)0,那么不等式f(x)h(x)g(x)同解。
④不等式f(x)g(x)>;0与不等式同解;不等式f(x)g(x)<0与不等式同解。
注意事项
1.符号:
不等式两边都乘以或除以一个负数,要改变不等号的方向。
2.确定解集:
比两个值都大,就比大的还大;
比两个值都小,就比小的还小;
比大的大,比小的小,无解;
比小的大,比大的小,有解在中间。
三个或三个以上不等式组成的不等式组,可以类推。
3.另外,也可以在数轴上确定解集:
把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。
4.不等式两边相加或相减,同一个数或式子,不等号的方向不变。(移项要变号)
5.不等式两边相乘或相除,同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)
知识要领总结:不等式两边乘或除以同一个负数,不等号的方向改变。(÷或×1个负数的时候要变号)。
第4篇 初中知识点总结不等式
a>b,b>c→a>c;
a>b →a+c>b+c;
a>b,c>0 → ac>bc;
a>b,c<0→ac
a>b>0,c>d>0 → ac>bd;
a>b,ab>0 → 1/a<1/b;
a>b>0 → a^n>b^n;
基本不等式:√(ab)≤(a+b)/2
那么可以变为 a^2-2ab+b^2 ≥ 0
a^2+b^2 ≥ 2ab
扩展:若有y=x1_x2_x3.....xn 且x1+x2+x3+...+xn=常数p,则y的值为((x1+x2+x3+.....+xn)/n)^n
绝对值不等式公式:
| |a|-|b| |≤|a-b|≤|a|+|b|
| |a|-|b| |≤|a+b|≤|a|+|b|
证明方法可利用向量,把a、b 看作向量,利用三角形两边之差小于第三边,两边之和大于第三边。
第5篇 初中知识点总结不等式
一、目标与要求
1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
二、重点
理解并掌握不等式的性质;
正确运用不等式的性质;
建立方程解决实际问题,会解'ax+b=cx+d'类型的一元一次方程;
寻找实际问题中的不等关系,建立数学模型;
一元一次不等式组的解集和解法。
三、难点
一元一次不等式组解集的理解;
弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;
正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。