第1篇 初中数学代数知识点总结
初中数学代数知识点总结
单项式与多项式
仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式
单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数
当一个单项式的系数是1或-1时,“1”通常省略不写
一个单项式中,所有字母的指数的和叫做这个单项式的次数
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中最高次项的次数,就称为这个多项式的次数
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子
3、多项式的恒等
对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)
性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)
性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等
4、一元多项式的根
一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的'字母因式,则连同它的指数作为积的一个因式
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加
常用乘法公式
公式i平方差公式
(a+b)(a-b)=a^2-b^2
两个数的和与这两个数的差的积等于这两个数的平方差
公式ii完全平方公式
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
两数(或两式)和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍
单项式的除法
两个单项式相除,就是它们的系数、同底数的幂分别相除,而对于那些只在被除式里出现的字母,连同它们的指数一起作为商的因式,对于只在除式里出现的字母,连同它们的指数的相反数一起作为商的因式
一个多项式处以一个单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
第2篇 初中数学代数知识点总结
初中数学代数知识点分式与二次根式总结
1 分式与分式方程
11 指数的扩充
12 分式和分式的基本性质
设f,g是一元或多元多项式,g的次数高于零次,则称f,g之比f/g为分式
分式的基本性质 分数的分子与分母都乘以或除以同一个不等于0的.数,分数的值不变
13 分式的约分和通分
分式的约分是将分子与分母的公因式约去,使分式化简
如果一个分式的分子与分母没有一次或一次以上的公因式,且各系数没有大于1的公约数,则此分式成为既约分式既约分式也就是最简分式
对于分母不相同的几个分式,将每个分式的分子与分母乘以适当的非零多项式,使各分式的分母相同,而各分式的值保持不变,这种运算叫做通分
14 分式的运算
15 分式方程
方程的两遍都是有理式,这样的方程成为有理方程如果有理方程中含有分式,则称为分式方程
2 二次根式
21 根式
在实数范围内,如果n个x相乘等于a,n是大于1的整数,则称x为a的n次方根
含有数字与变元的加,减,乘,除,乘方,开方运算,并一定含有变元开方运算的算式成为无理式
22 最简二次根式与同类根式
具备下列条件的二次根式称为最简二次根式:(1)被开方式的每一个因式的指数都小于开方次数 (2)根号内不含有分母
如果几个二次根式化成最简根式以后,被开方式相同,那么这几个二次根式叫做同类根式
23 二次根式的运算
24 无理方程
根号里含有未知数的方程叫做无理方程
第3篇 初中数学代数知识点总结
初中数学代数公式总结
初中数学学习方法之代数公式教学
前面为大家讲到的是代数公式教学的类比模式,下面的小编继续为大家分享的是初中数学学习方法之代数公式教学的逆化模式,有兴趣的同学可以过来看看记记。
逆化模式
提出问题,激发思维
引导学生把问题向对立面方向转化。如“-”转化为“+”处理,“÷”转化为“×”等
应用新知识,解决问题。
本模式的特点是渗透逆化的意识,引导和鼓励学生建立知识间的正反联系,在把未知问题转化为已知问题来解决的过程中,感悟“逆化”是解决问题的重要方法之一。同时学生在“逆化”过程中必然会反复进行呈现——辩析,有利于提高学生知识的运用能力,形成合理的认知结构。
本模式的适用范围是是新旧知识之间的联系可建立在对立位置上的互为逆运算及互为逆变换的内容。
下面的公式可以考虑用这种模式进行教学:
(1)有理数的减法法则
(2)有理数的除法法则
(3)同底数幂的除法法则
(4)多项式除以单项式法则
(5)添括号法则
(6)多项式的因式分解的公式
(7)二次根式的乘法法则
(8)二次根式的除法法则
看过初中数学学习方法之代数公式教学的逆化模式,相信同学们都能仔细记忆灵活运用了。接下来还有更丰盛的营养大餐等着大家来吸收哦。
初中数学解题方法之常用的公式
下面是对数学常用的公式的讲解,同学们认真学习哦。
对于常用的公式
如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。
总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。
初中数学解题方法之学会画图
数学的解题中对于学会画图是有必要的,希望同学们很好的学会画图。
学会画图
画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。
初中数学解题方法之审题
对于一道具体的`习题,解题时最重要的环节是审题。
审题
认真、仔细地审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。读题一旦结束,哪些是已知条件?求解的结论是什么?还缺少哪些条件,可否从已知条件中推出?在你的脑海里,这些信息就应该已经结成了一张网,并有了初步的思路和解题方案,然后就是根据自己的思路,演算一遍,加以验证。有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。很多时候学生来问问题,我和他一起读题,读到一半时,他说:“老师,我会了。”
所以,在实际解题时,应特别注意,审题要认真、仔细。
初中数学解题方法之增加习题的难度
人们认识事物的过程都是从简单到复杂,一步一步由表及里地深入下去。
增加习题的难度
应先易后难,逐步增加习题的难度。一个人的能力也是通过锻炼逐步增长起来的。若简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。而我们有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。
其实,解简单容易的习题,并不一定比解一道复杂难题的劳动强度和效率低。比如,与一个人扛一大袋大米上五层楼相比,一个人拎一个小提包也上到五层楼当然要轻松得多。但是,如果扛米的人只上一次,而拎包的人要来回上下50次、甚至100次,那么,拎包人比扛米人的劳动强度大。所以在相同时间内,解50道、100道简单题,可能要比解一道难题的劳动强度大。再如,若这袋大米的重量为100千克,由于太重,超出了扛米人的能力,以至于扛米人费了九牛二虎之力,却没能扛到五楼,虽然劳动强度很大,却是劳而无功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五楼,劳动强度也许并不很大,而效率之高却是不言而喻的。由此可见,去解一道难以解出的难题,不如去解30道稍微简单一些的习题,其收获也许会更大。
因此,我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
初中数学解题方法之归纳总结
下面是对数学解题归纳总结的讲解,希望给同学们的学习很好的帮助。
要学会归纳总结。
在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。
以上对数学归纳总结知识的内容讲解,希望同学们都能很好的掌握,相信同学们会学习的很好。